Irreversible inactivation of lactoperoxidase by mercaptomethylimidazole through generation of a thiyl radical: its use as a probe to study the active site.

نویسندگان

  • U Bandyopadhyay
  • D K Bhattacharyya
  • R Chatterjee
  • R K Banerjee
چکیده

The mechanism of suicidal inactivation of lactoperoxidase (LPO) by mercaptomethylimidazole (MMI) has been studied. Analogue studies indicate a specific requirement for the thiol group of MMI for inactivation of LPO in the presence of H2O2. MMI is oxidized via one-electron transfer by LPO compound II as demonstrated by a spectral shift from 430 to 412 nm through an isosbestic point at 421 nm. A decrease in Soret absorbance at 412 nm and the appearance of visible peaks at 592 and 636 nm are the characteristics of the inactivated enzyme. The one-electron oxidation product of MMI was identified by e.s.r. spectroscopy as the 5,5'-dimethyl-l-pyrroline N-oxide (DMPO) adduct of the sulphur-centred thiyl radical. Both inactivation and spectral change are prevented by the radical trap DMPO, suggesting involvement of the thiyl radical in inactivation. pH-dependent inactivation kinetics indicate the involvement of an ionizable group on LPO (pKa 6.1), deprotonation of which favours inactivation. The enzyme is protected by iodide and not by guaiacol, suggesting that MMI interacts at or near the iodide-binding site which is away from the aromatic-donor-binding site. The inactive enzyme can form compound II and bind aromatic donor, indicating that the MMI oxidation product does not attack haem iron or aromatic-donor-binding site. We suggest that MMI interacts at the iodide-binding site for oxidation and the reactive product, probably the thiyl radical, is incorporated into the adjacent electron-rich site of haem porphyrin to cause inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism-based inactivation of gastric peroxidase by mercaptomethylimidazole.

The mechanism of inhibition of gastric peroxidase (GPO) activity by mercaptomethylimidazole (MMI), an inducer of gastric acid secretion, has been investigated. Incubation of purified GPO with MMI in the presence of H2O2 results in irreversible inactivation of the enzyme. No significant inactivation occurs in the absence of H2O2 or MMI, suggesting the involvement of peroxidase-catalysed oxidized...

متن کامل

Comparing the Activity and Thermal Inactivation Behavior of Lactoperoxidase in Iranian Cow and Buffalo Milk and Whey

Background: Lactoperoxidase (LPO) is one of the most heat-stable enzymes in milk and its inactivation has been proposed for monitoring thermal processes. The aim of this study was to provide information on activity and thermal inactivation behavior of LPO in Iranian cow and buffalo milk and whey. Methods: Sixty cow and buffalo milk samples were collected. The LPO activity was measured using ...

متن کامل

Nitric oxide-dependent NAD linkage to glyceraldehyde-3-phosphate dehydrogenase: possible involvement of a cysteine thiyl radical intermediate.

Previous studies have demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) undergoes NAD(H) linkage to an active site thiol when it comes into contact with .NO-related oxidants. We found that a free-radical generator 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH), which does not release either .NO or .NO-related species, was indeed able to induce the NAD(H) linkage to GAPDH. ...

متن کامل

Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting con...

متن کامل

Evaluation and Characterization of Free and Immobilized Acethylcholinesterase with Fluorescent Probe, Differential Scanning Calorimetry and Docking

Acetylcholinesterase (AChE) enzyme which catalyses the hydrolysis of choline esters, such as acetylcholine, is very important in nerve function. Previous structural studies showed the possible amyloid fibril formation on the AChE. Therefore it is important to understand interaction of ligands to prevent the formation of  amyloid fibrils. The purpose of the present study was to  char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 306 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1995